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24 Abstract

25 Soil health (SH) refers to the ability of a soil to function and provide ecosystem 

26 services. This study reanalyzes data from long-term agronomic management experiments 

27 in North Carolina and addresses previous conclusions regarding the utility of SH test 

28 metrics.  Data for 15 SH indicators in the Comprehensive Assessment of Soil Health 

29 framework from three long-term trials in North Carolina were analyzed to assess effects of 

30 tillage intensity and organic vs. conventional management.  This included four soil 

31 biological indicators - organic matter (OM), active carbon (ActC), respiration (Resp) and 

32 protein (Prot); four soil physical indicators - available water capacity (AWC), water stable 

33 aggregation (Agstab), surface and subsurface penetration resistance (SurfHard, SubHard); 

34 and seven soil chemical (fertility) indicators (P, K, Mg, Fe, Mn, Zn, pH).  Corn (Zea mays L.) 

35 and soybean (Glycine max L. Merr.) yield data and SH indicator values were correlated 

36 using site-specific and multi-site datasets. Long-term management practices most 

37 commonly showed significant impacts with AgStab (up to 2.2x), ActC (2.1x), Prot (2.3x), 

38 and most chemical indicators. Tillage intensity had a greater impact than organic vs. 

39 conventional management and linear regression of multi-year mean corn and soybean 

40 response to tillage showed significant correlations with eight SH indicators, highest among 

41 them ActC, Protein, Resp, and Mn (R2=0.85-0.93). Contrary to previous conclusions, CASH 

42 indicators, especially those related to labile C and N, responded well to management 

43 practices and showed utility for soil health assessment in agronomic trials.

44

45 Abbreviations: ActC, active carbon, also known as permanganate oxidizable carbon, POXC; 

46 AgStab, water stable aggregation; AWC, available water capacity; CASH, Comprehensive 

Page 2 of 40Soil Sci. Soc. Am. J. Accepted Paper, posted 02/18/2019. doi:10.2136/sssaj2018.09.0338



47 Assessment of Soil Health, OM, organic matter; Resp, respiration during a 4-day incubation; 

48 SurfHard, penetration resistance within the 0 to 15-cm depth range; SubHard, penetration 

49 resistance within the 15 to 45-cm depth range; SH, soil health.

50

51 Introduction

52 Healthy well-functioning soils that enhance water and air quality, support human 

53 health and habitation, and sustain plant and animal productivity are essential to ensuring a 

54 sustainable future for an ever-growing global population (Karlen et al., 2003; Karlen and 

55 Rice, 2015).  Soil health (SH) refers to the ability of a soil to perform such functions based on 

56 its inherent and dynamic characteristics (Karlen et al., 1997; Andrews et al., 2004; Idowu et 

57 al., 2009). Therefore, within the context of land use and management goals, SH represents 

58 an understanding of this resource as a dynamic, complex, and living system (Doran and Zeiss, 

59 2000). The terms “soil quality” and “soil health” are used interchangeably in the literature 

60 and can be considered equivalent (Bünemann et al., 2018), but within the past five years 

61 stakeholder audiences and media sources have shown a preference for the latter term, which 

62 we use herein. 

63 The assessment of SH can be used as an indicator of sustainable land management 

64 (Doran and Jones, 1996; Karlen et al., 1997). Traditional soil testing was and continues to 

65 be essential, but it primarily focuses on soil chemical property measurements (i.e., pH and 

66 exchangeable or extractable nutrient concentrations) needed to evaluate soil fertility 

67 (Moebius-Clune et al., 2016). Without question, traditional soil testing and plant analysis 

68 have proven useful for increasing agricultural production, but the narrow focus on soil 

69 chemical properties and processes has been regarded as a contributor to physical and 
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70 biological soil degradation (Tilman et al., 2002; Andrews and Carroll, 2001). The concept of 

71 SH embraces a new comprehension of how soils function.  It includes an understanding of 

72 the physical, biological and chemical interactions that go well-beyond soil nutrient 

73 quantities, and is needed to diagnose and quantify critical dynamic and inherent soil 

74 properties and processes (Doran and Safley, 1997).

75 The Soil Management Assessment Framework (SMAF) was developed by Andrews et al. 

76 (2004) as a comprehensive tool that is sensitive to textural class, sub-order soil organic 

77 matter (SOM) content, Fe2O3 content, mineral class, climate, weathering class, slope, 

78 sampling time, crop sequence, P analytical method and EC analytical method to evaluate 

79 how land management practices impact soil functions (i.e,, physical, chemical, and 

80 biological soil processes). Subsequently, the Comprehensive Assessment of Soil Health 

81 (CASH) framework, initially referred to as the Cornell Soil Health Test (CSHT), was 

82 developed based on the same paradigm and designed as a practical framework that directly 

83 meets agricultural land manager and applied researcher needs.  A CASH analysis 

84 emphasizes identification of specific soil constraints within agroecosystems, thereby aiding 

85 in the selection of land management solutions to increase productivity and minimize 

86 environmental impact (Idowu et al., 2009). The utility of CASH indicators was initially 

87 evaluated based on the relevance to soil functions/processes, sensitivity to land 

88 management decisions, analytical cost, reproducibility of measurements, sampling 

89 requirements, and potential to be estimated by statistical correlation or detected using 

90 sensors (Moebius, 2007; Moebius-Clune et al., 2016). 

91 The CASH framework was originally calibrated for soils within the northeastern USA, 

92 but more recently has been applied to other geographic regions. A recent regional-scale 
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93 analysis of CASH showed significant SH differences between Midwestern, Northeastern and 

94 Mid-Atlantic soils that were attributed in part to differences in farming systems (Fine et al., 

95 2017).  Soil health studies using CASH have also been conducted at the landscape scale 

96 (Moebius-Clune et al., 2011; Svoray et al., 2015;) and plot scale (Idowu et al., 2009; 

97 Congreves et al., 2015; Kinoshita et al., 2017; Nunes et al., 2018), demonstrating that it can 

98 effectively detect differences among agronomic management practices at multiple spatial 

99 levels and with different types of soil.   Similarly, the SMAF has been successfully used for SH 

100 (soil quality) analysis in Brazil (Cherubin et al., 2016), Spain (Apesteguía et al., 2017), and 

101 for many different soil management comparisons throughout the U.S. (e.g., Veum et al., 2015; 

102 Hammac et al., 2016; Ippolito et al., 2017).   

103 Roper et al. (2017) assessed the utility of CASH as well as the Haney Soil Health Test 

104 (HSHT; Haney et al., 2006) and a standard test by the North Carolina Department of 

105 Agriculture and Consumer Services (NCDACS; Hardy, 2014) using long-term experiments 

106 in three physiographic regions of North Carolina.  This included an evaluation of CASH’s 

107 ability to detect effects of long-term tillage practices and organic vs. conventional 

108 management, as well as an analysis of correlations between soil health indicators and crop 

109 yield. Regarding the latter, few studies have been able to quantify positive relations 

110 between SH and crop yield, which is ostensibly a critical issue for farmer adoption. 

111 Contrary to most previous studies using either CASH or the SMAF, the authors concluded 

112 that SH indicators generally did not differentiate among agronomic management systems, 

113 and moreover that SH scores did not show any correlation with crop yield. Those 

114 conclusions have recently been cited by others (e.g., Rinot et al., 2019). 
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115 Questioning those conclusions based on multiple decades of experience in numerous 

116 geographic regions, we decided to re-examine the data and determine whether the 

117 research procedures, data analysis approach, or other factors negatively influenced the 

118 conclusions.  We concluded that the Roper et al. (2017) data clearly document management 

119 effects on CASH indicators and demonstrate positive correlations between SH indicators 

120 and yields of corn (Zea mays L.) and soybean (Glycine max L. Merr.), an elusive goal of past 

121 studies. This suggests that, in line with recent studies (Congreves et al., 2015; Kinoshita et 

122 al., 2017; Nunes et al., 2018), the use of CASH or SMAF indicators may in fact be quite 

123 valuable for evaluating agronomic practices in programs such as those being coordinated 

124 by the Soil Health Partnership (SHP) [https://www.iowacorn.org/corn-

125 production/environmental/soil-health-partnership], Soil Health Institute (SHI) 

126 [https://soilhealthinstitute.org/soil-health-research], USDA-NRCS Soil Health Division 

127 (SHD) [https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/assessment/], 

128 and Foundation for Food and Agricultural Research (FFAR) 

129 [https://foundationfar.org/challenge/healthy-soils-thriving-farms/].  Our goal therefore 

130 was to perform a rigorous re-analysis of the above-mentioned NC dataset addressing 

131 concerns with the research procedures and thereby determining: (i) effects of long-term 

132 agronomic management practices on CASH indicators, (ii) relationships between CASH 

133 indicators and crop yield for a range of tillage practices, and (iii) the overall utility of the 

134 CASH framework for assessing agronomic management practices. We are not addressing 

135 the results or conclusions related to the HSHT and NCDACS tests in the Roper et al. (2017) 

136 study which have a narrower focus than either CASH and were not available in the 

137 supplemental information.
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138

139 Materials and Methods

140 Research Trials

141 Data for this analysis were derived from Roper et al. (2017; Table S1 therein), which 

142 contained the measured values of the CASH indicators for three long-term experiments 

143 conducted within coastal plain, piedmont, and mountain physiographic regions of North 

144 Carolina. These soil provinces have variable soil genesis and properties that are reflected in 

145 inherent characteristics like texture and mineralogy, as well as distinct climate differences. 

146 Corn and soybean yield data were derived from Table 7 (ibid). Site and management 

147 history details are described in the original paper and only summarized herein:

148 The Goldsboro (coastal plain) research trial was conducted for 17 years on a site 

149 where Wickham sandy loam (fine-loamy, mixed semiactive, thermic Typic Hapludults) was 

150 the predominant soil with inclusions of Tarboro loamy sand (mixed, thermic Typic 

151 Udipsamments). Agronomic treatments involved tillage practices and organic vs. 

152 conventional nutrient and pesticide management. The study was initiated in 1999 (Mueller 

153 et al., 2002) and included chemical no-till (NoTill) and conventional till (ConvTill) practices. 

154 A 3-yr rotation, which since 2006 included corn, sorghum-sudangrass (Sorghum × 

155 drummondi), and double-crop soybean with winter wheat (Triticum aestivum L.) was 

156 followed. The original experimental design also included two organic treatments, both 

157 involving conventional tillage methods and adaptive cropping patterns. Since 2011, 

158 ConvTill-Org1 involved a three-year rotation with corn, soybean and a 1-yr stale seedbed 

159 with a sorghum-sudangrass cover crop. During the same time period ConvTill-Org2 

160 involved a 3-yr rotation of corn, soybean, and sunflower (Helianthus annuus L.) with a rye 
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161 (Secale cereal L.) cover crop before soybean, and a rye and legume cover crop mixture before 

162 corn and sunflower. The organic treatments utilized raw poultry litter as an external nutrient 

163 source, while the conventional plots received an equivalent N rate using commercial fertilizer 

164 sources. Yield measurements at this site were at times impacted by non-soil related factors, 

165 notably extreme weed and insect pressures in the organic treatments and asynchronous crop-

166 years (Roper et al., 2017).  They were therefore not considered for relating SH to crop yield.

167 The Reidsville (piedmont) research trial was conducted for 32 years on soil mapped as 

168 Toast coarse sandy loam (fine, kaolinitic, mesic Typic Kanhapludults) and involved a 

169 multitude of tillage treatments. It was initiated in 1984 with nine tillage treatments and 

170 conventional chemical management that represented different levels of soil disturbance 

171 ranging from minimal to severe (Cassel et al., 1995; Meijer et al., 2013). The multitude of 

172 treatments and very subtle differences among some of them - coupled with high sampling 

173 variability - challenged statistical analyses so the nine treatments were consolidated into 

174 three groupings: (i) MinimumTill, combining no-till and in-row subsoiling in spring, (ii) 

175 ChiselTill combining chisel plowing in spring, chisel plowing in fall, chisel plowing and 

176 disking in spring, and chisel plowing and disking in fall, and (iii) MoldboardPlow, combining 

177 spring and fall moldboard plowing and disking. This experiment involved multiple years of 

178 crop yield measurements for both corn and soybean (Roper et al., 2017) that were used to 

179 identify relationships with SH indicators.

180 The Mills River (mountain) research trial was conducted for 22 years on soil mapped 

181 as Delanco silt loam (fine-loamy, mixed, semiactive, mesic Aquic Hapludults).  It was 

182 initiated in 1994 and designed as a 2x2 factorial with chisel and no-till practices being used 

183 with conventional and organic management. An additional chisel plus disk tillage treatment 
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184 with no fertilizer or pesticide inputs was used as a control (Hoyt, 2005; 2007) but those 

185 results were not used for this study. As with the Goldsboro site, yield measurements from 

186 this experiment were impacted by non-soil related factors and complications related to crop 

187 sequences (Roper et al., 2017), and therefore were not considered for SH correlations with 

188 crop yield.

189

190 Soil Sampling

191 Soil samples were collected in late 2015 as discussed in Roper et al. (2017).  Three sets of 

192 penetrometer measurements (Field Scout SC-900, Spectrum, Aurora, IL) to a depth of 45 

193 cm were collected from each plot when the soil moisture content was approximately at 

194 field capacity. The highest resistance values within the 0-to-15-cm and 15-to-45-cm depths 

195 were recorded as SurfHard and SubHard values. Three to five auger cores were collected to 

196 a depth of 15 cm to obtain approximately 1400 cm3 of soil from each plot. Due to plot size 

197 limitations, this sampling protocol deviated from recommended CASH procedures which 

198 include more penetration measurements and a larger composite soil sample that is 

199 subsequently mixed and subsampled (Moebius-Clune et al., 2016).  This procedural 

200 deviation likely increased sample variability and was the primary motivation to combine 

201 treatments into more generalized groupings for statistical analysis, as discussed above. 

202 After sampling, soil material was analyzed for multiple SH indicators at Cornell University 

203 (Schindelbeck et al., 2016).

204

205 Quantification of soil health indicators
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206 In addition to SurfHard and SubHard in-field measurements, a CASH analysis includes 

207 measurements for two other soil physical indicators (Wet Aggregate Stability (AgStab), 

208 Available Water Capacity (AWC); four biological indicators [organic matter (OM), active 

209 carbon (ActC), autoclaved-citrate extractable protein (Protein), and soil respiration (Resp)] 

210 as well as seven soil chemical property indicators (pH and extractable P, K, Mg, Fe, Mn, and 

211 Zn).  All analytical measurements were performed on disturbed, air-dried soil sieved to 

212 pass a 2-mm screen.  Appropriate corrections for sample water content after air-drying 

213 were made after drying a subsample overnight at 105 °C. 

214 Detailed laboratory procedures are available from Schindelbeck et al. (2016). In short, 

215 AgStab was assessed using a rainfall simulator that generates 0.6 mm water drops and an 

216 adjustable Mariotte-type tube to control hydraulic pressure (Ogden et al., 1997). A single 

217 layer of aggregates was spread on a 0.25 mm mesh sieve that was placed 0.5 m below the 

218 rainfall simulator to thus apply 2.5 J of energy over a 300-s period.  AgStab was determined 

219 as the fraction of soil remaining on the sieve after correcting for solid particles >0.25 mm 

220 diameter.

221 Soil AWC was determined as the difference between water content at field capacity (θfc) 

222 and permanent wilting point (θpwp) based on a gravimetric analysis (g water g soil-1). 

223 Subsamples were saturated and equilibrated at -10 kPa (θfc) and -1500 kPa (θpwp) on 

224 ceramic high-pressure plates (Soil Moisture Equipment Corp., Goleta, CA; Topp et al., 1993). 

225 Soil OM content was determined by mass loss on ignition after two hours in a 500° C 

226 muffle furnace. Active C was quantified by measuring absorbance with a handheld 

227 spectrophotometer (Hach, Loveland, CO) after oxidizing duplicate, 2.5 g soil samples with 20 
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228 mL of 0.02 M potassium permanganate (KMnO4) solution (pH 7.2). This measurement is also 

229 referred to in the literature as permanganate oxidizable carbon, POXC.

230 Soil Resp was measured in duplicate after a 4-d incubation using a modified Haney and 

231 Haney (2010) method where soil was placed in a glass jar with a KOH-based CO2 trap. The 

232 amount of CO2 respired was determined by measuring the change in electrical conductivity 

233 of the solution with an OrionTM DuraProbeTM 4-Electrode Conductivity Cell (ThermoFisher 

234 Scientific, Inc., Waltham, MA).   The necessary background correction for atmospheric CO2 

235 was quantified using blank (i.e., no soil) incubations. 

236 Protein content was measured by extracting a subsample with 0.02 M sodium citrate (pH 

237 7), concentrating the sample through a series of centrifugation and autoclaving steps (Wright 

238 and Upadhyaya, 1996), and then quantifying soil protein content using a bicinchoninic acid 

239 assay with a bovine serum albumin standard curve. 

240 Soil pH was measured in a 1:1 soil:water slurry. Plant available soil nutrient 

241 concentrations (P, K, Mg, Fe, Mn and Zn) were measured using inductively coupled plasma 

242 optical emission spectrometry (SPECTRO Analytical Instruments Inc., Mahwah, NJ) after 

243 extracting with a Modified Morgan solution (ammonium acetate plus acetic acid, pH 4.8; 

244 McIntosh, 1969). All nutrient contents were calculated per mass of soil (mg kg-1).

245

246 Data analysis

247 Pearson product-moment correlation coefficients were computed for every pair of 

248 soil health indicators to create correlation matrices for the pooled dataset that included each 

249 individual trial, as well as all trials combined.  Data for each trial were analyzed for significant 

250 treatment effects using analysis of variance and means separation with the Tukey post-hoc 
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251 test for randomized complete block designs. Regression analysis was performed on corn and 

252 soybean yields vs. SH indicators for the Reidsville (piedmont) experiment, which contained 

253 16 years of continuous yield data (Roper et al., 2017). All statistical analyses and graphing 

254 were performed using RStudio software version 1.0.143 (R Core Team, 2016).

255

256 Results and Discussion

257 Site Comparisons and Correlation Analysis

258 Soil health for each site was characterized by mean values (Table 1). The piedmont site 

259 (Reidsville) generally showed the least favorable values for physical and biological 

260 indicators, possibly because it only involved row crops and did not include any poultry litter 

261 additions or cover crop.  The coastal plain (Goldsboro) site showed lower OM, but not 

262 commensurately lower Protein, ActC, and Resp, suggesting higher OM quality compared to 

263 the piedmont and mountain sites. That response was quite likely associated with the organic 

264 amendments and less organo-mineral bonds with coarser texture. The sites were strongly to 

265 moderately acidic (pH 5.4-5.6) but generally showed adequate levels of crop nutrients based 

266 on CASH interpretations (Moebius-Clune et al., 2016) , confirming that the sites generally 

267 had good fertility management. 

268 The SH indicators from each research site were compared with mean CASH database 

269 values for coarse and medium textured soils in the Mid-Atlantic (Table 1). Those reference 

270 data represent a diverse group of cropping systems and management practices within the 

271 region (Fine et al., 2017).  Mean AgStab values for the NC research sites were well below the 

272 Mid-Atlantic equivalents for the same textural groups, and the biological indicators (OM, 

273 Protein, Resp, and ActC) were also below the Mid-Atlantic average. Those results suggest 
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274 that the soils at the three research sites can be considered biologically and physically 

275 degraded, which is consistent with the generally low crop productivity. For example, corn 

276 grain yields averaged 6.21 and 4.89 Mg ha-1 (99 and 78 bu ac-1) for the coastal plain and 

277 piedmont sites, which is well below the 3-yr (2013, 2015, and 2016) NC average of 8.03 Mg 

278 ha-1 (128 bu ac-1; NASS, 2018).  Soybean yields for the piedmont site averaged 2.94 Mg ha-1 

279 (44 bu ac-1) which was higher than the state average for the same 3-yr period (2.40 Mg ha-1 

280 or 36 bu ac-1), while fresh weight of sweetcorn averaged 12.7 Mg ha-1 (1134 cwt ac-1) at the 

281 mountain site (Table 7 in Roper et al., 2017; Figs 1, 2). In addition to generally low crop 

282 yields, interpretations in the previous analysis were based on CASH scores rather than 

283 measured values (Roper et al., 2017). This could be problematic since CASH scores are based 

284 on sigmoidal functions (Moebius-Clune et al., 2016) which show small rates of change at the 

285 low end of the curve, thereby diminishing differences in measured values from agronomic 

286 practices. 

287 Pearson correlations among CASH indicators were developed for four cases: each of 

288 the three trials individually, and all trials combined (Tables 2-5). When SH data from all trials 

289 were pooled (n=64), half (53) of the 105 possible correlations among SH indicators were 

290 significant at =0.05 and a third (37) were significant at =0.01. Significant correlations 

291 were more or less equally found among physical, biological and chemical indicators, but the 

292 highest r-values tended to involve biological indicators or Mg.   Soil OM generally showed 

293 only modest correlations with other biological indicators, suggesting some orthogonality 

294 (i.e., OM quantity and quality were somewhat independently expressed, e.g., the coastal plain 

295 soils tended to have higher Protein and ActC contents relative to OM). Among these 

Page 13 of 40 Soil Sci. Soc. Am. J. Accepted Paper, posted 02/18/2019. doi:10.2136/sssaj2018.09.0338



296 indicators of labile organic matter, Protein, ActC, and Resp showed higher correlations, and 

297 were better correlated with AgStab than OM.

298 Less significant correlations were observed for individual sites, presumably due to a 

299 combination of less statistical power from a lower number of samples and smaller data 

300 ranges within individual sites. Correlation patterns for each site (Tables 3-5) also differed 

301 compared to the pooled data (Table 2), presumably reflecting treatment effects rather than 

302 soil type differences. Notably, individual research sites showed high correlations of AWC 

303 with OM, Mn, and Mg. Magnesium also correlated with other biological indicators and to a 

304 lesser extent physical indicators. Otherwise, chemical indicators showed limited inter-

305 correlations. Overall, different correlations among SH indicator data from pooled and 

306 individual sites suggest variable impacts for dynamic soil properties related to agronomic 

307 management practices compared to inherent soil properties associated with the 

308 geographically separated trial sites and soil types (Table 2).

309

310 Treatment effects

311 The three trials focused on different agronomic management practices, utilized different 

312 crop sequences, and were conducted in different regions of the state with dissimilar soils, all 

313 critical factors which were differentially expressed (Table 6).  For example, treatment factors 

314 were generally less significant (=0.05) at the Goldsboro (coastal plain) site than at the 

315 Reidsville (piedmont) and Mills River (mountain) sites. Notably, the Reidsville site, which 

316 only involved tillage comparisons, showed more significant treatment effects than either site 

317 where different tillage practices were combined with conventional vs. organic management.
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318 For all three sites, treatment effects were significantly expressed (=0.10) for ActC, 

319 Agstab, and P, and at two of three sites significant treatments were measured for Protein, 

320 pH, K, Mg, and Zn (Table 6). Other studies also found ActC and Agstab to be sensitive 

321 indicators, especially compared to OM, which often shows small non-significant effects from 

322 agronomic management practices (Idowu et al., 2009; Congreves et al., 2015; Kinoshita et al., 

323 2017; Nunes et al., 2018). 

324 For the Goldsboro (coastal plain) trial, average AgStab was significantly higher (=0.05) 

325 for No-Till than ConvTill-Org2, but for plant-available P NoTill was the lowest (Table 7). This 

326 suggests that the organic system with poultry litter additions benefited from soil nutrient 

327 additions, but had greater soil physical impediments due to tillage.  ActC also showed the 

328 highest numerical values for NoTill, but statistically they were not sufficient to be significant 

329 in a means comparison (=0.05).

330 The Reidsville (piedmont) trial involved a range of tillage practices that were pooled 

331 into three groups, MinimumTill, ChiselTill and MoldboardPlow (Table 7). For most biological 

332 and physical SH indicators, tillage effects followed a consistent pattern of 

333 MinimumTill>ChiselTill>MoldboardPlow, which were significant (=0.05) for Agstab, 

334 Protein, Resp, and ActC.  Tillage effects on chemical indicators were more variable, with only 

335 Mg and Mn showing the same pattern.  Intensive tillage accelerates decomposition of plant 

336 biomass due to higher O2 availability and exposure of older, physically-protected soil organic 

337 carbon (Reicosky, 1997; Reicosky et al., 2011). 

338 Tillage has thus been shown to increase CO2 emissions (Melland et al., 2017), reduce 

339 surface soil OM content (Kumar et al., 2017), and decrease the soil’s ability to retain nutrients 

340 and maintain its physical quality (Martínez et al., 2016; Alhameid et al., 2017). Our results 
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341 support the hypothesis that intensive tillage affects OM decomposition and impacts labile C 

342 and N fractions (Protein and ActC) more than total OM.  Also, the Resp indicator shows higher 

343 decomposition rates for reduced tillage soil after it is disturbed by sample processing, 

344 suggesting that the labile organic material is better retained when left undisturbed.  Low OM 

345 was also associated with decreased AgStab, an important indicator of physical soil quality. 

346 In a study with NC and Virginia soils, Franzluebbers (2018) and Franzluebbers et al. 

347 (2018a,b) conclude that the assessment of readily-decomposed C and N through the Resp 

348 test is a better predictor of plant N availability than Total N and can be used to optimize 

349 supplemental N fertilizer rates.  Yost et al. (2018) also found that Resp explained some of the 

350 variability in corn N response in eight Midwest states.

351 The Mills River (mountain) trial involved a factorial experiment that we analyzed to 

352 contrast organic vs. conventional and NoTill vs. ChiselTill (Table 7). Organic treatments 

353 focused on the use of cover crops and poultry litter, two practices that  generally resulted in 

354 more favorable physical and biological indicator values than conventional treatments, but 

355 the only significant (=0.05) difference was for ActC and there were no significant 

356 interaction effects. Many chemical indicators had higher values with organic management, 

357 suggesting that effective nutrient additions through poultry litter likely exceeded those from 

358 inorganic fertilizer. Except for surface penetration resistance (SurfHard), NoTill practices 

359 consistently showed more favorable physical and biological SH indicator values than 

360 ChiselTill, with significant differences (=0.05) for AggStab, Protein, P and Zn. The Mills 

361 River experiment thus suggests that tillage and organic vs. conventional treatment effects 

362 are differentially expressed through SH indicators.
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363 This re-analysis of the NC data counters previous interpretations (Roper et al., 2017) and 

364 is consistent with results from New York trials involving tillage practices, crop rotations, and 

365 cover crop treatments that showed CASH indicators could differentiate among various 

366 management practices (Nunes et al., 2018).   In these trials, ActC, Protein, Resp, AgStab and 

367 SurfHard showed significant responses to tillage (no-till, conventional till), and AWC to cover 

368 cropping. Similarly, Congreves et al. (2015) measured significant responses of CASH 

369 indicators (AgStab, pH and Zn) to tillage treatments (no-till, conventional till) in an Ontario 

370 study.  AgStab, P, and Mn also responded to crop rotation effects.  Furthermore, an 

371 assessment of a long-term tillage (plow, no-till) and crop residue management (removed or 

372 retained) study by Kinoshita et al. (2017) showed that 40-year effects were discernable in 

373 the 0-15 cm layer for all measured biological indicators and the majority of physical (notably 

374 AgStab) and chemical indicators. Effects in some cases were also detected within the subsoil.  

375 In ten European long-term experiments involving tillage and organic input management, 

376 ActC (POXC) was determined to be the most sensitive and useful indicator for labile C 

377 (Bünemann et al., 2018; Bongiorno et al., 2019).  Collectively, these reports are in agreement 

378 with our results showing that CASH indicators can differentiate agronomic management 

379 effects.

380

381 Soil Health and Yield

382 Demonstrating positive relationships between soil health and crop yield is of great 

383 interest to farmers as it could justify management investments in practices such as reduced 

384 tillage, adding organic inputs, or altering rotations. But this has been difficult, especially in 

385 experimental trials due to often inconsistent yield data or confounding impacts (e.g., pest 
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386 pressure, weather variability, and/or extraneous management factors).  Roper et al., (2017; 

387 Fig. 2 therein) used the NC dataset to determine relationships between overall soil health 

388 scores and crop yield for the piedmont and mountain sites but found no correlation. We 

389 hypothesize that this was primarily due to the use of overall soil health scores (masking 

390 individual indicator effects) and confounding impacts associated with non-soil factors 

391 (notably pest pressures). Nevertheless, the Reidsville (piedmont) site provided an excellent 

392 experimental dataset to evaluate correlations between individual CASH indicators (rather 

393 than scores) and yield, because (i) data were available from 17 corn harvests (between 

394 1987 and 2015) and 10 soybean harvests (1990 to 2014), (ii) there was a gradient of tillage 

395 intensities, and (iii) there were no apparent confounding factors affecting crop yields at 

396 this site (as opposed to the coastal plain and mountain experiments).

397 Linear regression line plots showing relationships between various SH indicators and 

398 yields of corn (Fig. 1) and soybean (Fig. 2) had high annual variability as expressed by 

399 standard deviation (sd) bars (pooled values of 2.72 and 1.21 Mg ha-1 for corn and soybean, 

400 respectively).  Corn yields were less than 7 Mg ha-1 (112 bu ac-1) with about half of the 

401 means.  Multi-year mean yield values, however, were often closely correlated with SH 

402 indicators, especially for the biological properties and processes (Figs 1, 2).  Eight soil 

403 health indicators (Agstab, OM, Protein, Resp, ActC, P, Mg and Mn) showed significant 

404 (=0.10) linear regression effects with mean corn and soybean yields (Table 8). This 

405 implies that tillage-related SH differences as indicated by the SH values can on average be 

406 expected to result in higher crop yields.  For each SH indicator the linear relationship with 

407 mean corn and soybean yield generally followed the pattern MinimumTill > ChiselTill > 

408 MoldboardPlow, especially for the biological measurements (Figs. 1, 2). This implies that 
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409 reduced tillage resulted in better SH indicator values that in turn were associated with 

410 higher average crop yields. This experiment thus provides some of the very best-available 

411 results linking agronomic management practices to both soil health and yield benefits, and 

412 counters conclusions by Roper et al. (2017) that SH indicators could not be correlated to 

413 crop yield, which is relevant to commercial farmers. 

414 For corn yields, the highest significant regression coefficients and associated R2
adj

 

415 values (Table 8) followed the order of Protein>ActC>Mn>Resp>Aggstab>P>Mg>OM, while 

416 for soybean yield they were ActC>Resp>Mg>Mn>Protein>P>Aggstab>OM (Figs 1, 2; note: 

417 X-Y plots are ordered by R2
adj value).  Several insightful conclusions can be drawn from this 

418 re-analysis:

419 1. Biological indicators associated with labile C and N show the strongest linear 

420 regression fit with mean yield for both crops: ActC had very high R2
adj values of 0.93 

421 and 0.85 for mean soybean and corn yields, respectively, and Resp shows R2
adj 

422 values of 0.90 for mean soybean yield and 0.75 for corn. Protein values showed the 

423 highest fit with mean corn yield (R2
adj =0.88), but a lower correlation with soybean 

424 yield (0.55), suggesting that a legume crop would benefit less from high soil Protein 

425 levels -- and presumably the associated organic nitrogen -- than a non-legume crop. 

426 This makes biological sense. 

427 2. Soil OM levels showed relatively weak regression fits with mean yield (ranked 8th 

428 for both corn and soybean; p=0.06 and 0.09, respectively), while OM quality 

429 indicators (i.e., Protein, ActC) correlated much better, suggesting that OM quality 

430 may be more relevant to crop yield than OM quantity.
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431 3. Strong regression fits between crop yield and biological indicators suggest that the 

432 negative impacts of intensive tillage on labile organic C fractions that are most 

433 readily decomposed also adversely affect crop yield. Notably, Protein represents low 

434 C:N organic matter that is readily used as a microbial food source and ActC mimics 

435 organic matter decomposition including more recalcitrant forms (Weil et al, 2013; 

436 Romero et al., 2018).  

437 4. Mn is strongly impacted by tillage intensity, which in turn correlates well with mean 

438 corn and soybean yield (R2
adj=0.85 and 0.65, respectively). Unlike other crop 

439 nutrients, Mn was not managed through external applications and Mn contents for 

440 this experiment were not out of line with regional averages (Table 1). Recent studies 

441 have shown that Mn redox cycling is important in organic matter decomposition 

442 (Keiluweit, 2015), which according to these results is impacted by tillage intensity.

443 5. AgStab is negatively impacted by tillage intensity and shows modest correlations 

444 with yield, presumably due to aggregation effects from higher biological activity 

445 (Magdoff and van Es, 2009), as evidenced by the biological SH indicators (Table 8).

446 6. Weaker correlations were observed for P and Mg (Fig. 1, 2), which presumably 

447 relates to their enhanced availability with higher organic matter quality.

448  

449 Conclusions

450 This study re-analyzed data from three long-term agronomic experiments in North 

451 Carolina and conveys different perspectives from the paper by Roper at al. (2017), which 

452 had concluded that the CASH framework and two other soil tests have limited ability to 

453 discern among management practices. It had also concluded that there was a lack of 
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454 correlation between SH measurements and crop yield.  Our analysis utilizes more nuanced 

455 interpretations and is mostly in disagreement with those conclusions, but corroborates 

456 other previous research on the utility of SH indicators. This is in part due to the fact that 

457 the Roper et al. (2017) analysis was negatively impacted by low statistical power from high 

458 sample variability, interpretations based on non-linear scoring functions that obscured 

459 effects of individual treatments, as well as insufficient differentiation of the performance of 

460 CASH from other soil tests (i.e.,  NSHT and NCDACS). Moreover, their inference that overall 

461 SH scores and crop yields were not correlated was strongly confounded by several non-soil 

462 factors (i.e., very low crop yields in some years, and pest pressures related to organic 

463 practices). Furthermore, the analyses considered SH scores rather than individual indicator 

464 values, which was problematic due to the quality of the soils.

465 Our analysis provides a different perspective and concludes that multi-functional 

466 soil health indicators (biological, physical, chemical) indeed offer valuable insights for 

467 interpreting long-term effects of agronomic management practices. Notably, we 

468 demonstrated that different management practices variably impact different aspects of SH, 

469 especially indicators associated with labile organic matter (ActC, Protein, Resp, AgStab). 

470 Changes in tillage intensity appear to have greater impacts than organic vs. conventional 

471 practices. Also, correlations among SH indicators varied based on the geographic scope of 

472 the analysis and whether it involved a single-location trial or multiple trials.

473 Furthermore, the piedmont trial involving a range of tillage intensities and 16-year 

474 cropping data offered unique insights into correlations between SH indicators and crop 

475 yields as impacted by tillage. Although annual variability of corn and soybean yields was 

476 high, the long-term average yields showed very good linear regression fits with SH 
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477 indicators related to organic matter quality. This suggests that labile sources of C and N are 

478 important to soil health and crop performance. Results also show that Mn, which plays a 

479 role in organic matter dynamics, is impacted by tillage practices and in turn correlates with 

480 yields. 

481 Overall we conclude that, contrary to previous inferences from these trials, (i) 

482 comprehensive soil health assessment through the CASH framework was able to discern 

483 effects of agronomic management practices (tillage, organic practices), (ii) biological 

484 indicators associated with labile C and N are most impacted by management practices, 

485 especially tillage, and (iii) SH indicators can be related to yield of corn and soybean under 

486 varying tillage intensities, but scoring curves for soil health may need to be regionalized.

487
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672 Table 1. Means of CASH soil health indicators for the coastal plain, piedmont and mountain sites, as well as the CASH database for Mid-Atlantic 
673 soils (from Fine et al., 2017). 

Site region n texture AWC† SurfHard SubHard Agstab OM Protein Resp ActC pH P K Mg Fe Mn Zn
m3/m3 - - - - MPa - - - - % % mg/g mgCO2/g mg/kg - - - - - - - - - - mg/kg - - - - - - - - - - -

Goldsboro coastal 
plain

12 SL / LS 0.16 1.53 2.75 11 1.7 4.5 0.35 320 5.4 11.7 122 93 4.9 7.4 1.9

Reidsville piedmont 32 SL 0.15 1.82 3.59 9 2.5 3.1 0.34 289 5.6 8.8 100 126 3.0 4.4 1.9
Mill River mountain 20 SiL 0.21 1.48 2.61 12 2.6 4.0 0.39 312 5.6 6.3 123 151 4.2 6.6 0.8

database Mid-
Atlantic

101 coarse 0.11 1.25 2.21 45 2.2 6.4 0.52 335 6.0 14.2 92.5 87 3.5 7.4 1.9

database Mid-
Atlantic

317 medium 0.22 1.34 2.00 43 4.1 10.0 0.86 564 6.2 23.2 164 173 4.7 17.2 2.0

†AWC, available water capacity; SurfHard, penetration resistance within the 0 to 15-cm zone; SubHard, penetration resistance within the 15 to 45-cm zone; AgStab, 
water stable aggregation; OM, organic matter; Resp, respiration during a 4 day incubation; ActC, active carbon.

674
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675

676 Table 2. Pearson correlations among CASH soil health indicators for all coastal plain, piedmont and 
677 mountain samples with p<0.05 (bolded numbers p<0.01; n=64).

AWC†
Surf
Hard

Sub
Hard

Ag
Stab OM Protein Resp ActC pH P K Mg Fe Mn Zn

AWC 1.00
SurfHard 1.00
SubHard -0.59 0.37 1.00
AgStab 0.28 -0.28
OM 0.47 0.25 1.00
Protein 0.35 -0.55 0.55 1.00
Resp 0.31 -0.30 -0.34 0.28 0.41 0.48 1.00
ActC 0.25 -0.30 0.56 0.39 0.67 0.73 1.00
pH 0.59 0.37 1.00
P -0.37 -0.37 0.50 0.27 0.37 1.00
K 0.38 -0.28 -0.34 0.29 0.31 0.52 0.47 0.36 1.00
Mg 0.53 -0.26 0.30 0.78 0.64 0.59 0.52 0.60 1.00
Fe -0.24 -0.36 -0.41 1.00
Mn 0.57 -0.52 0.25 0.43 0.30 0.24 0.35 1.00
Zn -0.41 0.42 -0.27 1.00

678  †AWC, available water capacity; SurfHard, penetration resistance within the 0 to 15-cm zone; SubHard, 
679 penetration resistance within the 15 to 45-cm zone; AgStab, water stable aggregation; OM, organic matter; Resp, 
680 respiration during a 4-day incubation; ActC, active carbon.

681
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682 Table 3. Pearson correlations among CASH soil health indicators for coastal plain (Goldsboro) samples 
683 with p<0.05 (bolded numbers p<0.01; n=12).

AWC†
Surf
Hard

Sub
Hard

Ag
Stab OM Protein Resp ActC pH P K Mg Fe Mn Zn

AWC 00
SurfHard 1.00
SubHard -0.61 0.65 1.00
AgStab 0.61 1.00
OM 0.87 -0.57 -0.62 1.00
Protein 1.00
Resp 0.67 -0.59 0.77 1.00
ActC 0.61 1.00
pH -0.63 0.70 1.00
P 1.00
K -0.63 -0.79 0.75 0.81 0.70 1.00
Mg 0.76 -0.59 -0.62 0.93 0.79 0.62 0.79 1.00
Fe 1.00
Mn 0.84 0.66 -0.64 1.00
Zn 0.70 1.00
684 †AWC, available water capacity; SurfHard, penetration resistance within the 0 to 15-cm zone; SubHard, penetration 
685 resistance within the 15 to 45-cm zone; AgStab, water stable aggregation; OM, organic matter; Resp, respiration 
686 during a 4-day incubation; ActC, active carbon.

687

688
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689 Table 4. Pearson correlations among CASH soil health indicators for all piedmont (Reidsville) samples 
690 with p<0.05 (bolded numbers p<0.01; n=32).

AWC†
Surf
Hard

Sub
Hard

Ag
Stab OM Protein Resp ActC pH P K Mg Fe Mn Zn

AWC 1.00
SurfHard 1.00
SubHard .00
AgStab 1.00
OM 0.68 0.59 1.00
Protein -0.44 0.47 1.00
Resp 0.47 0.37 0.65
ActC 0.40 0.67 0.58 0.73 0.84 1.00
pH 0.60 0.40 1.00
P 0.67 0.50 0.40 1.00
K 0.49 0.46 0.47 1.00
Mg 0.41 0.69 0.75 0.40 0.69 0.80 0.47 0.55
Fe -0.51 0.38 -0.52 1.00
Mn 0.53 0.49 0.47 0.42 0.51 1.00
Zn -0.35 -0.40 0.59 1.00
691 †AWC, available water capacity; SurfHard, penetration resistance within the 0 to 15-cm zone; SubHard, penetration 
692 resistance within the 15 to 45-cm zone; AgStab, water stable aggregation; OM, organic matter; Resp, respiration 
693 during a 4-day incubation; ActC, active carbon.

694
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695 Table 5. Pearson correlations among CASH soil health indicators for mountain (Mills River) samples with 
696 p<0.05 (bolded numbers p<0.01; n=20).

AWC†
Surf
Hard

Sub
Hard

Ag
Stab OM Protein Resp ActC pH P K Mg Fe Mn Zn

AWC 1.00
SurfHard 1.00
SubHard
AgStab
OM 0.65
Protein 0.53 0.67 0.62 1.00
Resp 0.46 1.00
ActC 0.61 0.73 0.67 1.00
pH 0.60 0.45 1.00
P 0.46 0.47 0.70 0.78 1.00
K 0.52 0.47 0.47 0.65 0.50 1.00
Mg -0.45 0.48 0.64 0.81 0.56 0.49 0.83 1.00
Fe -0.46 -0.50 -0.48 1.00
Mn -0.47 1.00
Zn 0.66 0.68 0.60 0.73 1.00

697 †AWC, available water capacity; SurfHard, penetration resistance within the 0 to 15-cm zone; SubHard, 
698 penetration resistance within the 15 to 45-cm zone; AgStab, water stable aggregation; OM, organic 
699 matter; Resp, respiration during a 4-day incubation; ActC, active carbon.

700

701
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702

703 Table 6. P values for treatment effects on CASH soil health indicators for Goldsboro, Reidsville, and Mills River samples.

AWC†
Surf
Hard

Sub
Hard

Agg
Stab OM Protein Resp ActC pH P K Mg Fe Mn Zn

Goldsboro NS‡ NS NS 0.020 NS NS NS 0.072 NS 0.035 NS NS NS NS 0.046
Reidsville NS NS NS 0.006 NS 0.002 0.001 <0.001 0.01 0.06 0.008 0.016 NS 0.002 NS
Mills River NS NS NS 0.052 NS 0.002 NS <0.001 0.014 <0.001 0.002 0.011 0.075 NS <0.001
†AWC, available water capacity; SurfHard, penetration resistance within the 0 to 15-cm zone; SubHard, penetration resistance within the 15 to 45-cm zone; 
AgStab, water stable aggregation; OM, organic matter; Resp, respiration during a 4-day incubation; ActC, active carbon.
‡NS: not significant at α=0.1.

704

705
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706 Table 7. Soil management contrasts related to CASH soil health indicators for Goldsboro, Reidsville, and Mills River samples. Bold 
707 numbers indicate treatment effects at =0.05. Of those, treatments within the same site followed by the same letter are not 
708 significantly different.

Site AWC†
Surf
Hard

Sub
Hard

Agg
Stab OM Protein Resp ActC pH P K Mg Fe Mn Zn

Goldsboro
ConvTill 0.160 1.72 2.877 13.07a 1.433 4.37 0.287 277 5.00 9.37ab 93.1 57.0 4.57 9.03 1.30
ConvTill-Org1 0.147 1.45 3.023 9.83ab 1.433 4.33 0.400 304 5.57 17.10a 122.3 77.3 5.97 5.80 2.93
ConvTill-Org2 0.167 1.15 2.563 6.60b 1.933 4.23 0.383 294 5.57 12.13ab 161.9 128.0 2.80 7.70 2.10
NoTill 0.183 1.78 2.520 14.40a 1.833 5.00 0.347 406 5.37 8.00b 108.9 111.0 6.10 7.13 1.30

p-value 0.707 0.584 0.768 0.020 0.589 0.110 0.426 0.072 0.183 0.035 0.118 0.396 0.479 0.720 0.046

Reidsville
MoldboardPlow 0.149 2.00 3.75 6.45b 2.16 1.95c 0.229b 181b 5.39b 5.36 83.8b 103.3b 2.78 3.59b 1.663
ChiselTill 0.149 1.61 3.71 8.34b 2.44 2.95b 0.379a 313a 5.77a 9.96 116.4a 132.4ab 3.16 4.34b 1.450
MinimumTill 0.160 1.84 3.30 12.17a 2.77 4.43a 0.414a 372a 5.53ab 11.16 100.1ab 141.0a 3.00 5.14a 2.438

 p-value 0.233 0.206 0.333 0.006 0.139 <0.001 0.001 <0.001 0.011 0.066 0.007 0.016 0.894 0.002 0.129

Mills River
Conventional 0.207 1.655 2.760 11.73 2.532 3.79 0.375 277b 5.55 4.79b 90.9b 133.2b 5.34a 6.17 0.793
Organic 0.212 1.455 2.471 13.68 2.660 4.36 0.424 387a 5.78 9.22a 160.0a 179.1a 2.24b 7.09 0.950

p-value 0.428 0.474 0.080 0.572 0.582 0.233 0.317 0.003 0.139 0.011 <0.001 <0.001 0.039 0.252 0.210

ChiselTill 0.209 1.405 2.606 8.38b 2.481 3.40b 0.391 296 5.78 4.84b 124.4 153.1 3.98 6.29 0.588b
NoTill 0.211 1.705 2.625 17.03a 2.711 4.76a 0.408 367 5.56 9.18a 126.6 159.2 3.60 6.97 1.075a

p-value 0.694 0.277 0.914 0.003 0.314 <0.001 0.743 0.085 0.168 0.013 0.918 0.704 0.817 0.393 0.004
709 †AWC, available water capacity; SurfHard, penetration resistance within the 0 to 15-cm zone; SubHard, penetration resistance within the 15 to 45-cm zone; 
710 AgStab, water stable aggregation; OM, organic matter; Resp, respiration during a 4-day incubation; ActC, active carbon.
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711

712 Table 8. Results for linear regression of mean corn and soybean yields on CASH soil health indicators, Reidsville site (all 
713 p<0.05; bolded: R2

 adj >0.75). SD is the pooled standard deviation associated with annual yield variability.

AggStab† OM Protein Resp ActC P Mg Mn

% % mg g-1
mg CO2 

g-1 - - - - - - - mg kg-1 - - - - - - 

Corn Yield 
 R2

adj 0.71 0.37 0.88 0.75 0.85 0.66 0.56 0.85
 p-value, regr coeff 0.005 0.063 <0.001 0.003 <0.001 0.008 0.019 <0.001
 intercept 1487 -1492 1822 1219 1284 2475 -333 -1946
 slope 386 2606 1002 10478 12.26 266 41.1 1572

Soybean Yield
 R2

adj 0.48 0.31 0.55 0.90 0.93 0.59 0.76 0.65
 p-value, regr coeff 0.033 0.090 0.021 <0.001 <0.001 0.015 0.003 0.01
 intercept 1483 447 1616 1132 1207 1695 469 400
 slope 113 831 283 3855 4.34 87 15.8 479

714 † AgStab, water stable aggregation; OM, organic matter; Resp, respiration during a 4-day incubation; ActC, active carbon.
715

716
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717

718
719 Figure 1. Linear regression of corn yield on CASH soil health indicators, organized from highest to lowest R2

adj value (cf. Table 7). Regression line 
720 is based on mean yields for tillage treatments, and error bars represent standard deviations associated with annual yield variability.

721
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722

723
724 Figure 2. Linear regression of soybean yield on CASH soil health indicators, organized from highest to lowest R2

adj value (cf. Table 7). Regression 
725 line is based on mean yields for tillage treatments, and error bars represent standard deviations associated with annual yield variability.

726

727
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