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Small bacterial and archaeal genomes provide insights into 
the minimal requirements for life1 and are phylogenetically 
widespread2. However, the precise environmental pressures 
that constrain genome size in free-living microorganisms are 
unknown. A study including isolates has shown that thermo-
philes and other bacteria with high optimum growth tempera-
tures often have small genomes3. It is unclear whether this 
relationship extends generally to microorganisms in nature4,5 
and more specifically to microorganisms that inhabit complex  
and highly variable environments, such as soils3,6,7. To 
understand the genomic traits of thermally adapted micro-
organisms, here we investigated metagenomes from a 45 °C 
gradient of temperate-to-thermal soils that lie over the  
ongoing Centralia, Pennsylvania (USA) coal-seam fire. We 
found that hot soils harboured distinct communities with 
small genomes and small cell sizes relative to those in ambient 
soils. Hot soils notably lacked genes that encode known two-
component regulatory systems, and antimicrobial production 
and resistance genes. Our results provide field evidence for 
the inverse relationship between microbial genome size and 
temperature in a diverse, free-living community over a wide 
range of temperatures that support microbial life.

Centralia, Pennsylvania is the site of a slow-burning, near- 
surface coal-seam fire that ignited in 1962. The heat from the fire 
vents through overlying soils, thus causing surface soil temperatures 
to reach up to > 400 °C8, but more recently in the range of 40–75 °C9,10. 
Centralia offers an interesting model press disturbance11 that can 
be used to directly compare the traits of microorganisms that can 
withstand thermal temperatures to traits of microorganisms from 
proximal soils at ambient temperature.

We recently assessed the compositional changes in Centralia soil 
microbial communities along an ambient-to-thermal temperature 
gradient overlying the fire10. We collected surface soils that were hot 
due to the fire (‘fire-affected’), previously hot but now recovered to 
ambient temperatures (‘recovered’) and never impacted by the fire 
(‘reference’). Fire-affected soils had a starkly different community 
structure from ambient soils. These hot soils also had overlapping 
16S rRNA gene compositions, but the abundances of taxa varied. 
However, after the fire advanced, soils recovered reasonably towards 
the reference community structure. This suggested a considerable 
capacity for resilience of soil microbiomes, even after exposure to 
a severe and unanticipated stressor, and prompted us to investi-
gate which microbial attributes underlie the community changes in  
fire-affected soils.

From twelve metagenomes (six fire-affected, five recovered and 
one reference; Supplementary Table 1), we calculated the average 

genome sizes inclusive of chromosomes and plasmids. The average 
genome sizes were negatively and strongly correlated with tempera-
ture (Fig. 1a; Pearson’s R =  − 0.910, P <  0.001; n =  12 metagenomes). 
This relationship was not due to changes in eukaryotes or plasmids 
along the gradient (Supplementary Table 2). We used three addi-
tional methods to assess the changes in genome size with soil tem-
perature and found them all to be in agreement (Supplementary  
Fig. 1). Although other variables that were not measured might pro-
vide additional information, only temperature was explanatory out 
of the thirteen soil variables measured in this study (Supplementary 
Table 3). Here we report a decrease in average genome size across 
an in situ temperature gradient that spans the physiological require-
ments from mesophiles to thermophiles.

We next compared the average genome sizes estimated from 
Centralia metagenomes to those from 22 public soil metagenomes 
(Fig. 2a and Supplementary Table 4). Generally, hot Centralia 
soils had small genomes relative to other soils, whereas ambient 
Centralia soils were closer to the average size observed among this 
set. The average genome sizes from ambient Centralia soils were in 
agreement with sizes reported from other soils and calculated using 
comparable methods7,12,13.

We compared average genome sizes in Centralia to the sizes 
of a collection of soil isolate genomes (RefSoil; Fig. 2b). Genome 
sizes from RefSoil did not differ across several soil types (Fig. 2c), 
which suggests that soil type has a minimal influence on genome 
size. Although the average genome size in hot Centralia soils is not 
as small as the soil oligotroph Candidatus Udaeobacter (2.81 ×  106 
base pairs (Mbp)6), it is significantly smaller than directly com-
parable ambient Centralia soils and small relative to other soils  
(Fig. 2a). Together, these results support comparably small  
genomes in Centralia soils and more generally provide a range of 
expected soil genome sizes. Moreover, the average genome sizes  
in Centralia ambient soils are not remarkably large. This suggests 
that the inverse relationship between genome size and soil tem-
perature in Centralia soils is an ecologically meaningful outcome of  
abiotic filtering.

It was hypothesized by Sabath and colleagues that small cells  
may be selected for at high temperatures to minimize cellular  
maintenance costs and that small cells indirectly select for small 
genomes3. We re-analysed microscope images from soil cell  
counts in Centralia10 to extract size information. Average cell 
sizes were also negatively correlated with temperature (Fig. 1b; 
Pearson’s R =  − 0.65, P =  0.021, n =  12 soils; Supplementary Table 5). 
Accordingly, cell size correlated with genome size (Fig. 1c; Pearson’s 
R =  0.64, P =  0.025, n =  12 soils). These results agree with reported 
in situ relationships between cell size and temperature observed 
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in aquatic systems4,5. Our results extend the cell size–temperature 
trend to soils and also to a 45 °C temperature range.

Cell and genome sizes can be governed not only by environ-
mental conditions but also by taxonomy (for examples, see refs 3,14).  
As we previously reported10 and as confirmed by this work using  
phylogenetic inference of genome size (Supplementary Fig. 1b), there 
were stark changes in community structure between fire-affected 
and ambient soils (Supplementary Fig. 2). This provides evidence 
that there was environmental filtering for taxa with small genomes 
in hot Centralia soils caused by compositional turnover. Using 104 
high-quality, de novo metagenome-assembled genomes (MAGs; 
Supplementary Fig. 1c and Supplementary Table 6), which repre-
sent some of the most abundant taxa, we investigated whether small 
MAGs typical of hot Centralia soils were relatives of thermophiles 
or lineages that have characteristically small genomes (Fig. 3 and 
Supplementary Fig. 2b). Some of the MAGs assembled from hot soils 
were related to known thermophile lineages, such as Crenarcheota, 
Thaumarchaeota and Chloroflexi; however, other ‘hot’ MAGs  

cluster with lineages that are not described as thermotolerant  
(Fig. 3a). Taxonomy could not be assigned to 51 (out of 104) MAGs 
beyond the phylum level, and two bacteria could not be assigned 
beyond the domain level, suggesting previously undescribed taxa 
(Fig. 3b and Supplementary Table 6). For some phyla, Centralia 
MAGs trended small relative to the median genome sizes of isolate 
references (for example, Acidobacteria and Actinobacteria; Fig. 3b), 
although there were exceptions (for example, Chloroflexi). Other 
lineages did not have a sufficient number of reference genomes  
to make robust comparisons and point to phylogenetic gaps in soil 
reference genomes.

We used metagenome annotations from the KEGG module 
database to determine changes in functional genes with increasing 
temperature. KEGG modules are groups of KEGG orthologs that 
represent complexes, functional sets, metabolic pathways or signa-
tures. Of the KEGG orthologs detected in Centralia metagenomes, 
81% were found in all 12 soils and many patterns with temperature 
could be attributed to changes in normalized KEGG ortholog abun-
dance rather than changes in KEGG ortholog detection. In total, 
284 (out of 541 detected; 52.50%) were correlated with temperature 
(Fig. 4, Supplementary Table 8 and Supplementary Discussion).

Twenty-seven KEGG modules were positively correlated with 
temperature (Pearson’s R >  0.656, false discovery rate <  0.05; Fig. 4a, 
Supplementary Table 8). Anaerobic processes, including dissimila-
tory sulphate reduction (M00596), dissimilatory nitrate reduction 
(M00530) and denitrification (M00529), were enriched in hot soils 
(Fig. 4a, cluster iii), aligning with known and expected environ-
mental conditions in Centralia. Fire-affected soils from actively 
steaming vents had higher moisture than ambient soils (Pearson’s 
R =  0.714, P <  0.01; n =  12 soils), which probably causes inundated 
and anaerobic microhabitats. Previous work in Centralia indi-
cated an importance of sulphur, sulphate, nitrate and ammonium 
metabolisms because these compounds were commonly elevated at 
vents8,9. These results also agree with observations of thermophile 
metabolisms in other terrestrial and geothermal environments15–18. 
These anaerobic KEGG modules had similar dynamics to several 
archaeal proteins (Fig. 4a cluster iii; archaeal ribosome M00179, 
polymerase M00184 and exosome M00390). There was an increase 
in Crenarchaeota in fire-affected soils10, an archaeal phylum that 
includes sulphate reducers19 and has nine soil reference genomes 
that average 2.26 Mbp (Fig. 3b). Together, these data suggest that 
pathways enriched in small genomes from hot soils encode func-
tions attuned to the Centralia habitat.

Temperature was negatively correlated with 257 KEGG modules  
(47.5%, Pearson’s R <  − 0.6, false discovery rate <  0.05; Fig. 4b, 
Supplementary Table 8). In general, depleted KEGG modules were 
detected across ambient soils. Note that antimicrobial resistance 
and production and two-component regulatory systems comprised 
32.7% of the KEGG modules negatively correlated with temperature 
(84 out of 257; Fig. 4b). This trend was striking, but some KEGG 
modules belonging to these categories had no relationship to tem-
perature and these KEGG module categories were always detected 
in fire-affected soils.

Thirty-nine modules for antimicrobial production and resistance 
were negatively correlated with temperature, which is in agree-
ment with our previous analysis of antibiotic resistance genes in 
Centralia20. Small genomes of host-associated symbionts often lack 
antimicrobial genes21. However, the free-living marine Pelagibacter 
clade, a model for genome streamlining attributed to oligotrophic 
conditions, has a multidrug transporter conserved across sequenced 
genomes22. The challenges in developing selectable antibiotic resis-
tance markers for thermophiles23,24 suggest that thermophiles might 
have fewer genes that encode resistance to described antimicro-
bials. Similar to most databases, KEGG is biased towards genomes 
and genes from fast-growing mesophiles and may miss annotation  
of poorly described thermophile antimicrobial genes. However, 
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Fig. 1 | Changes in average genome and cell sizes across the soil 
temperature gradient in Centralia. a, The average genome size in each 
metagenome was calculated using MicrobeCensus and plotted against 
the site temperature (Pearson’s correlation P =  4.095 ×  10−5). b, The 
average cell length was measured from 44–910 cells from 3–9 replicate 
fields for each soil and plotted against the soil temperature (Pearson’s 
correlation P =  0.022). c, The average genome size had a direct relationship 
with the average cell size (Pearson’s correlation P =  0.025). All Pearson’s 
correlations were two-tailed; n =  12.
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thermal conditions might present a strong environmental filter that 
reduces competition and the need for antimicrobial production and 
resistance. We previously reported decreased richness and phylo-
genetic diversity of fire-affected Centralia soils10, which suggests 
that there is a smaller pool of potential competitors that inhabits 
the hot soils.

Forty-nine of the total detected modules were also negatively 
correlated with temperature (Pearson’s R <  − 0.6). Two-component 
systems allow bacteria to respond to multiple stimuli with little 
genetic material25,26. Smaller genomes, including those that are 
reduced or streamlined, can have fewer regulatory components5,7,27 
and less regulation22,28–31. Our results suggest that thermophiles may 
have relatively low regulatory needs. It has been proposed that ther-
mophiles with small genomes may be more likely to utilize global 
regulatory systems that mediate transcriptional responses to co-
occurring environmental stimuli29. Environmental stability is also 
predicted to influence the relative benefit that an organism gains 
from investing in sensing its environment32. For example, obligate 
endosymbionts are thought to have drifted towards having small 
genomes in part because conditions are stable and sensing require-
ments are minimal7. In Centralia, seasonal temperature fluctuations 
in fire-affected and ambient soils are equivalent (Supplementary 
Fig. 3), providing evidence that the soils experience similar environ-
mental stability in terms of temperature, albeit at different ranges. 
This suggests that wild small genomes are not necessarily condi-
tional on stable environments7 and begs the question of whether 
two-component regulatory systems are consistently less prevalent 
among thermophiles.

Our cultivation-independent field study supports cultivation-
dependent studies that suggest that higher temperatures support the 
growth of bacteria and archaea with small genomes3. Surprisingly, 
it also suggests that microbial populations inhabiting complex envi-
ronments, such as soils, may generally reflect similar overarching 
traits in genome size to those observed in laboratory studies.

These results add evidence that supports selection for both 
smaller genomes and cells at higher temperatures, but also offer a 
key point of distinction. Our study considers the ecological process 
of selection33 through abiotic environmental filtering, not the evolu-
tionary process of natural selection, towards streamlining. Although 
taxa that were enriched in hot soils characteristically had smaller 
genomes and cells, there is no evidence for contemporary genome 
streamlining in Centralia. Instead, we suspect that these thermotol-
erant cells were resuscitated from the vast dormant pool in the soil. 
This is supported by three lines of evidence. First, there was turnover 
in community membership across hot and ambient Centralia soils10, 
thus providing evidence against contemporary streamlining within 
local lineages. Second, many of the lineages that we detected in high 
abundance at certain hot sites were also detected in low abundance 
at other sites, including ambient sites (Fig. 3a and ref. 10), suggest-
ing a role for the rare biosphere or dormant pool as a diversity res-
ervoir for unanticipated thermal conditions. Finally, many other 
studies have described thermophile persistence and resuscitation 
from non-thermal environments, which suggests that thermophilic 
lineages are widespread but typically inactive (for example, see  
refs 16,34,35). Therefore, we posit that the small genomes in Centralia 
are characteristic of previously dormant thermophiles in the soil 
and not the outcome of genome streamlining.

Centralia afforded a unique opportunity to directly compare 
the metagenomes of proximal soils along an extreme tempera-
ture range. It is unusual to observe such a wide temperature range  
in soils, especially one that is inclusive of thermal temperatures,  
historically and geologically comparable, and with shared expo-
sure to the same regional pool of dispersed microorganisms. When  
more metagenomes are available, comparisons with other thermal 
soils will provide insights into the generality of the trends observed 
in Centralia.

There are many environmental factors that contribute to micro-
bial genome size, including oligotrophic conditions6,36, relative 
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Fig. 2 | Comparison of Centralia genome sizes to other soils. a, Comparison to publicly available metagenomes of similar coverage and quality from 
the database MG-RAST. The average genome sizes in soil metagenomes were estimated using MicrobeCensus. The samples are ordered according to 
average genome size and colour coded according to the location from which the sample was obtained. b, Distribution of genome size from cultivable soil 
microorganisms (RefSoil) with and without plasmids. The mean genome size of Centralia fire-affected and recovered metagenomes are plotted over the 
distribution. c, The distribution of genome size (including plasmids) are not distinct across different soil orders. Previously published estimates of the 
abundance of RefSoil organisms in the soil Earth Microbiome Project53 dataset were used to estimate the distribution of genome size of soil microbiomes 
in Alfisols, Vertisols and Mollisols. The midlines of each box plot correspond to the median values. The top and bottom of each boxplot represent the 75th 
and 25th percentiles, respectively. The upper and lower whiskers extend to the furthest values that are not outliers.
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environmental stability7,32 and symbiotic lifestyle28,31, and these 
factors are expected to interact with taxonomy3,14. Furthermore, 
there are evolutionary explanations as to why small genomes 
might trend with high temperatures, as discussed in detail by 
Sabath and colleagues3. Here, we provide evidence that many lin-
eages of soil microorganisms that can thrive at thermal tempera-
tures and have small genomes and cells, supporting the hypothesis 
that small cells constrain genome size3. Importantly, our results 
show that high temperature is one environmental factor that can 
drive overarching changes in the genomic and cellular traits of 
wild microbial communities.

Methods
DNA extraction and metagenome sequencing. DNA for metagenome sequencing 
was manually extracted using a phenol–chloroform extraction37 and then 
purified using the MoBio DNeasy PowerSoil Kit according to the manufacturer’s 
instructions. Briefly, as per a previously published protocol5, after four freeze–thaw 
cycles, 10 ml phenol–chloroform-isoamyl alcohol (25:24:1) was added to each 
sample, mixed and centrifuged at 7,500 g for 10 min. After precipitation, DNA  
was pelleted through centrifugation at 7,500 g for 15 min. The pelleted DNA  
was resuspended in 100 μ l TE buffer (10 mM Tris–HCl, 1 mM EDTA•Na2).  

The extracted DNA was then purified using the MoBio DNeasy PowerSoil kit as 
per the manufacturer’s instructions, omitting the 10 min vortexing step after the 
addition of solution C1. Total DNA sequencing was performed on all 12 samples by 
the Department of Energy’s Joint Genome Institute (Community Science Project) 
using an Illumina HiSeq 2500. Libraries were prepared with a targeted insert size of 
270 bp. Samples had between 19 Gbp and 50 Gbp of sequence data.

Quality control, assembly and annotation. Adapters were removed and quality 
trimmed at values smaller than 12 using BBDuk (https://sourceforge.net/projects/
bbmap/). BBDuk was also used to remove reads that had more than one ambiguous 
base, a final length of less than 40 bp after trimming or an average quality score 
below eight. Reads that matched Illumina artifacts, spike-ins or phiX were also 
removed and the resulting reads mapped to human genome HG19 using BBMap, 
removing all reads that hit with > 93% identity. These quality-controlled reads  
from each metagenome were assembled separately using megahit6 with k-mer  
size ranging from 31–121 with a k-step of ten. The coverage of the resulting contigs 
was estimated using seal to map all reads onto the contigs.

To use all of the sequencing data, we worked with assembled and unassembled 
reads processed by IMG using their standard annotation pipeline38. After 
comparing several annotation methods (Supplementary Discussion), we chose to 
use the KEGG orthology database39 to analyse the Centralia data due to its inherent 
structure and ability to integrate metabolic pathways. KEGG ortholog abundances 
were relativized to the median abundance at each site of a set of 36 single-copy 
genes that were published previously40 (Supplementary Table 7). One single-copy 

a

G
en

om
e 

si
ze

 (
M

bp
)

b

Archaea Crenarchaeota Thaumarchaeota

Alphaproteobacteria Gammaproteobacteria Verrucomicrobia

Gemmatimonadetes Planctomycetes Proteobacteria

Chloroflexi Cyanobacteria Firmicutes

Armatimonadetes Bacteroidetes Chlamydiae

Bacteria Acidobacteria Actinobacteria

Ref
er

en
ce

 so
il

Fire
-a

ffe
cte

d 
so

il

Am
bie

nt

Ref
er

en
ce

 so
il

Fire
-a

ffe
cte

d 
so

il

Am
bie

nt

Ref
er

en
ce

 so
il

Fire
-a

ffe
cte

d 
so

il

Am
bie

nt

2.5
5.0
7.5

10.0

1.5

2.0

3
5
7
9

5

10

15

3
4
5
6
7

1.5

2.5

3.5

4

6

8

10

2

4

6

8

4

6

8

6

8

10

2
3
4
5
6
7

1.6

2.0

2.4

5

10

15

3

4

5

2
3
4
5
6
7

4.3
4.4
4.5
4.6

2.5

5.0

7.5

10.0

2
3
4
5

1177 14 8888 84 11

2 1 19 3 1 3 1

9 6 27 2 206 4

1 1 1 1 3 458 36 4

124 7 2 193 10 1 2 4 3

34 8 1 9 1 7 1

20

30

40

50

Soil temperature (°C)

Centralia MAG

Psychrophile

Thermophile

Mesophile

Temperature not reported

IMG genome

0

0 0

0

00 0

0

0 0

Fig. 3 | Temperature distribution and diversity of Centralia MAgs compared to reference soil genomes from iMg and refSoil. a, Microbial reference 
phylogeny based on single-copy (or ‘marker’) genes45 that was expanded to include Centralia MAGs. For clarity, large clades that did not contain MAGs 
are collapsed. The inner colour ring shows phylum-level taxonomy, matched to the phyla in b. The outer colour ring shows the temperature reported 
for Integrated Microbial Genomes (IMG) reference lineages (muted colours) and the distribution and measured soil temperatures for Centralia MAGs 
(brighter colours; black flags). b, Genome sizes of RefSoil isolates compared to 104 of the highest-quality Centralia MAGs from fire-affected and ambient 
soils (taxonomy was assigned by the Microbial Genome Atlas NCBI Prokaryote project44). The sample sizes indicated in the panel headers are the total 
number of RefSoil genomes or Centralia MAGs detected within each lineage. Note the differences in the y axis ranges. Because many of the highest-quality 
MAGs were assembled from hot soils, b does not provide robust MAG comparisons across the Centralia fire impact categories. The midlines of each box 
plot correspond to the median values. The top and bottom of each boxplots represent the 75th and 25th percentiles, respectively. The upper and lower 
whiskers extend to the furthest values that are not outliers.

NATurE MiCrobiology | VOL 4 | JANUARY 2019 | 55–61 | www.nature.com/naturemicrobiology58

https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
http://www.nature.com/naturemicrobiology


LettersNature Microbiology

gene (K01519) was an outlier in 7 out of 12 samples, as assessed by Grubb’s test for 
outliers, and removed. We analysed patterns in KEGG Modules39, a set of manually 
defined functional units made up of multiple KEGG orthologs. KEGG module 
abundances were calculated based on the median abundance of their constituent 
KEGG orthologs that were present in the metagenomes. KEGG modules were 
included in an analysis if 50% or more of their constituent KEGG orthologs were 
identified in the dataset. Approximately one-third of the open reading frames per 
sample could be annotated with KEGG (Supplementary Table 1). As a caveat to 
the study, unannotated open reading frames can result from erroneous reads and 
misassemblies but also could be previously undescribed and/or divergent genes 

that are critical for microbial processes. Thus, new annotations could impact the 
overarching patterns described here.

Average genome size. Average genome size was calculated from the quality-filtered 
DNA sequences using MicrobeCensus (run_microbe_census.y –n 2000000), which 
estimates the average genome size by calculating the percentage of sampled reads 
that match to a set of single-copy genes41. We also used three additional methods 
to calculate average genome size (Supplementary Fig. 1) and all were in agreement 
in detecting a significant, negative relationship between temperature and average 
genome size. Finally, eukaryotic sequence and plasmid contributions were 
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consistent and low across the metagenomes (Supplementary Table 2), showing 
that there was no systematic overestimation of genome size in ambient soils due to 
eukaryotic signal or characteristic changes in plasmids with temperature.

We calculated the odds ratios for each of the 36 single-copy gene KEGG 
orthologs, previously used by He et al.40 to estimate average genome sizes. The  
odds ratios were determined at each site by comparing their abundance within  
a site to their average abundance across all 12 sites. One KEGG ortholog  
(K01519, triosephosphate isomerase) was an outlier in 7 out of 12 metagenomes,  
as determined by Grubb’s test and was removed.

We used previously published 16S rRNA gene sequencing data3 to estimate the 
average genome sizes. A mean phylum genome size was calculated for each phylum 
present in Centralia metagenomes using all complete or permanent draft genomes 
deposited in IMG. Outliers in genome sizes were identified using the Tukey 
method and omitted from the calculation of the mean phylum genome size13. Phyla 
that were present in Centralia metagenomes but lacked representative genomes 
in IMG were combined at the domain level and a mean domain genome size was 
calculated in the same manner. The weighted mean genome size of each site was 
calculated based on the relative abundance of the phyla at the respective site.

Quality-filtered metagenome reads were downloaded from the JGI GOLD 
database. Paired-end reads from all 12 soils were assembled using MEGAHIT 
(v1.0.2)6 with a k-mer range of 27–107 and a k-step of 10. Reads were mapped to 
the resulting assembly using bbmap (v35.34) with a minimum identity of 76%. The 
resulting SAM files were converted to sorted BAM files using SAMTools (v1.3). 
Contigs that were larger than 2,500 bp were binned into MAGs with MetaBAT 
(v0.26.3) using the ‘—veryspecific’ flag. Completeness and contamination were 
estimated for each MAG using CheckM (v1.0.5). MAGs with more than 90% 
completeness and less than 5% contamination were used to estimate genome size. 
The genome size of a MAG was estimated by multiplying the sum of the length  
of its constituent contigs by the inverse of its completeness14. The average  
MAG size at each site was calculated by taking the mean of the sizes of all MAGs 
detected at a site.

Average cell size. To calculate cell size, we re-analysed microscope images that 
were used in a previous report to count microbial cells for community size 
quantifications in the same soils10. We hand-curated a debris-free subset from  
the images and measured 44–910 cells from 3–9 replicate fields for each soil.  
The major and minor axes of cells were measured using a FIJI macro in ImageJ 
(version 2.0.0-rc-65/1.51s, build 961c5f1b7f). We found that the cell size range  
and deviations (Supplementary Table 5) were consistent with those reported in 
earlier work42.

Construction of MAGs, taxonomic assignments and visualization. The 
assembled contigs from quality-filtered reads were binned into MAGs using 
MetaBAT43 (v0.26.3) with the ‘—veryspecific’ flag. A detailed description of 
assembly and binning procedures can be found in Supplementary Information. 
Completeness and contamination were estimated for each MAG using CheckM 
(v1.0.5). MAGs were assigned taxonomy using the Microbial Genome Atlas NCBI 
Prokaryote project44. The highest-quality MAGs with more than 90% completeness 
and less than 5% contamination were used to estimate genome size. The genome 
size of a MAG was estimated by multiplying the sum of the length of its constituent 
contigs by the inverse of its completeness6. The average MAG size at each site was 
calculated by taking the mean of the sizes of all MAGs detected at a site.

The CheckM45 genome tree was extended to include Centalia high-quality 
MAGs. The Interactive Tree of Life46 was used for visualization (https://itol.embl.
de/tree/352041174435631527858534). The temperature range and taxonomy 
for each genome in the tree was collected from JGI IMG. MAGs were classified 
as fire-affected or ambient on the basis of which group of samples they had a 
higher coverage of and 95% of MAGs had at least 10×  greater coverage in one soil 
category in comparison to the other.

Comparisons with other soil metagenomes and genomes. All metagenome 
datasets for comparison were obtained from MG-RAST (http://metagenomics.
anl.gov/). The MG-RAST database was searched with the following criteria: 
material =  soil, sequence type =  shotgun and public =  true. The resulting list 
of metagenome datasets were ordered according to the number of base pairs. 
Metagenomic datasets with the highest number of base pairs were included if they 
were sequenced using Illumina (to standardize sequencing errors), had an available 
FASTQ file (for internal quality control) and contained < 30% low-quality reads 
as determined by MG-RAST. Within high-quality Illumina samples, priority for 
inclusion was given to projects with multiple samples. When a project had multiple 
samples, datasets with the greatest number of base pairs were selected. This search 
yielded 22 datasets from 12 locations and 5 countries (Supplementary Table 4). 
Sequences from MG-RAST datasets were quality checked using FastQC (v0.11.347) 
and quality controlled using the FASTX toolkit (fastq_quality_filter, ‘− Q33 − q 30 
− p 50’). The average genome size for each dataset was calculated from the quality-
filtered DNA sequences using MicrobeCensus with default parameters.

RefSoil48 was used to estimate the genome sizes of soil organisms. Genome and 
plasmid sizes from all 922 RefSoil organisms were extracted from GenBank files 
and read into R for analysis.

Statistical analyses. Statistics for the metagenome datasets were performed in the 
R environment for statistical computing49. The stats package was used to calculate 
two-sided Pearson’s correlations49. The outliers package50 was used to identify 
outlying KEGG orthologs. The ggplot2 package was used for visualization51. Heat 
maps were created with heatmap2 from the gplots package52.

Code availability. All analysis workflows are available via GitHub (https://github.
com/ShadeLab/PAPER_Sorensen_NatMicro_2018).

Data availability
Metagenome data are available on IMG under the GOLD Study ID GS0114513. 
MG-RAST data are available under Project IDs mgp3731, mgp252, mgp5588, 
mgp14596, mgp6377, mgp6368, mgp2592, mgp2076, mgp11628, mgp13948, 
mgp7176 and mgp15600.
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Data collection Illumina RTA software version 1.18.61 was used for sequence base calling.

Data analysis  Bbmap (v35.34) was used for adapter trimming, read filtering and read mapping.  
Megahit (v1.0.2) was used for assembly of metagenomes. 
SAMTools (v1.3) was used for sorting and converting SAM file to BAM files.  
MetaBAT (v0.26.3) was used for binning contigs. 
 The outliers package (v0.14) was used for detecting outliers (grubbs.test).  
MicrobeCensus (v1.0.7) was used to estimate average genome size from metagenomes.  
ImageJ (Version: 2.0.0-rc-65/1.51s Build: 961c5f1b7f) was used to measure cell size. 
CheckM (v1.0.5) was used to estimate completeness and contamination of MAGs. 
FASTX toolkit (v0.0.14) was used for quality control of metagenomes downloaded from MG-RAST. 
R (v3.4.0) was used for statistical analyses. 
The vegan package (v2.4-6) was used for mantel tests(mantel), creating dissimilarity matrices(vegdist), and z-scoring(decostand).  
The stats package (v3.4.0) was used for Pearson's correlations (cor.test) and false discovery rate correction of p values (p.adjust). 
BBDuk was used trim and filter reads. bbduk.sh https://sourceforge.net/projects/bbmap/: ktrim=r, minlen=40, minlenfraction=0.6, 
mink=11, tbo, tpe, k=23, hdist=1, hdist2=1, ftm=5 
FASTQC(v0.11.3) was used to quality check MG-RAST datasets 
MiGA(0.3.3.1) was used to identify and quality check Metagenome Assembled Genomes. 
Gplots (3.0.1) was used for plotting heatmaps. 
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ggplot2(2.2.1) was used for visualization. 
iTOL (4.2.3) was used for visualizing phylogenetic trees.
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Metagenome data are available on IMG under the GOLD Study ID GS0114513.  
MG-RAST data are available under Project IDs mgp3731, mgp252, mgp5588, mgp14596, mgp6377, mgp6368, mgp2592, mgp2076, mgp11628, mgp13948, 
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Sample size This was an observational study. Soils overlying the Centralia coal mine fire were sampled to capture a gradient of measured surface soil 
temperature suitable for mesophiles and thermophiles. Samples were collected along a gradient of fire-impact along both fire fronts in 
Centralia, to span the range of environmental variability in temperature and historical knowledge of fire advancement at the time of sampling.

Data exclusions  No metagenomes were excluded from this analysis. When analyzing single copy genes abundance, a single KO was removed from analysis 
because it was an outlier in 7 out of 12 samples as assessed by Grubb's test for outliers. The KEGG Ortholog (KO) was removed (not a sample, 
but a housekeeping gene used as a point of reference with the suite of genes samples) were done so based on a statistical outlier test, which 
criteria are pre-established based on statistical expectations.  This is described in detail in the methods.  When calculating average genome 
size for individual phyla (Supporting Figure 1B), genomes that were outliers based on the Tukey method were omitted from the final 
calculation of that phylum's average genome size. For calculating average cell sizes using automated measurements with ImageJ, images with 
soil particles were excluded from analysis so that the software did not accidentally include soil particles in the calculation of cell size.

Replication We have created computing workflow scripts to reproduce all of the analyses. Because this is an observational study of an environmental 
gradient, experimental replication is not applicable.

Randomization Randomization was not relevant to our study. We were analyzing metagenome characteristics across a gradient of temperatures and not 
between groups. We controlled for covariates by checking for correlation of a suite of physico-chemical data with temperature across these 
samples; these covariates were previously reported in Sorensen et al. 2017 ISMEJ.

Blinding Blinding was not relevant to this observational study. This is an observational study of an environmental gradient and there were no samples 
excluded from the dataset.  There were no a priori treatment groups, etc.
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Obtaining unique materials The only unique materials from this study are the soil samples. We have a limited amount of these soils that have been 
constantly stored at -80C (~200g per sample). Other researchers are welcome to visit the study site and collect their own soil 
samples using the GPS coordinates that we provide of the sampling locations.
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